AND8246/D

A 160 W CRT TV Power Supply using NCP1337

Prepared by: Nicolas Cyr

ON Semiconductor

Introduction

Valley switching converters, also known as quasi-resonant (QR) converters, allow designing flyback Switch-Mode Power Supplies (SMPS) with reduced Electro-Magnetic Interference (EMI) signature and improved efficiency. Thanks to the low level of generated noise, valley switching SMPS converters are therefore very well suited to applications dealing with RF and video signals, such as TVs.

ON Semiconductor NCP1337 is a powerful valley switching controller, which eases the design of an EMI-friendly TV power supply with only a few surrounding components. Moreover, very low standby power (less than $1 \mathrm{~W})$ can be achieved without any noise.

Main Features of the Controller

- Automatic Valley Switching
- Current-Mode
- Soft Ripple Mode with Minimum Switching Frequency for Noise-Free Standby
- Auto-Recovery Short-Circuit Protection Independent of Auxiliary Voltage
- Over Voltage Protection
- Brown-Out Protection
- 2 Externally Triggerable Fault Comparators (Auto-Recovery or Permanent Latch)
- Internal 5 ms Soft-Start
- 500 mA Peak Current Source/Sink Capability
- 130 kHz Max Frequency
- Internal Leading Edge Blanking
- Internal Temperature Shutdown
- Direct Optocoupler Connection
- Dynamic Self-Supply

ON Semiconductor

http://onsemi.com

APPLICATION NOTE

A 160 W TV Power Supply Design

Power Supply Specification

Input Voltage	Universal input 90 Vac to 265 Vac
Output Power	160 W
Outputs	$+135 \mathrm{~V}, 1 \mathrm{~A} \max (135 \mathrm{~W})$ regulated
	$+20 \mathrm{~V}, 800 \mathrm{~mA} \max (16 \mathrm{~W})$
	$+12 \mathrm{~V}, 500 \mathrm{~mA} \max (6 \mathrm{~W})$
	$+8 \mathrm{~V}, 500 \mathrm{~mA}$ max (4 W)
	Standby output : Protections Standby Polator
Short-circuit, over-power, over-voltage and brown-out	

Schematic

Design Steps

1. Reflected Voltage

Let us first start the design by selecting the amount of secondary voltage we want to reflect on the primary side, which will give us the primary to secondary turn ratio of the transformer. If we decide that we want to use a rather cheap and common 600 V MOSFET, we will select the turn ratio by:

$$
\mathrm{V}_{\text {INmax }}+\mathrm{N} \cdot\left(\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F}}\right)<600 \mathrm{~V}
$$

$\mathrm{V}_{\text {INmax }}$ is 375 V and $\left(\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{F}}\right)$ is about 135.5 V . If we decide to keep a 100 V safety margin, it gives $\mathrm{N}<0.92$. We will choose a turn ratio of $\mathrm{N}=0.91$, which will give a reflected voltage of 123 V .

2. Peak Current

Knowing the turn ratio, we can now calculate the peak primary current needed to supply the 75 W of output power. If we neglect the delay T_{W} between the zero of the current and the valley of the drain voltage, we can calculate IPmax by:

$$
\mathrm{IPmax}=2 \cdot \mathrm{POUT} \cdot \frac{\mathrm{~V}_{\text {IN }} \min }{}+\mathrm{N} \cdot\left(\mathrm{~V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{F}}\right)
$$

$\mathrm{V}_{\text {INmin }}$ is 110 V and η is 85%. Plugging the other values gives us a maximum peak current of $\mathrm{I}_{\mathrm{Pmax}}=6.5 \mathrm{~A}$. NCP1337 max current sense setpoint is 500 mV , so we should put a sense resistor $\mathrm{R}_{\mathrm{S}}=0.5 \mathrm{~V} / 6.5 \mathrm{~A}=0.077 \Omega$. We will use two standard 0.15Ω resistors in parallel, that will allow $\mathrm{I}_{\text {Pmax }}=6.67 \mathrm{~A}$.

3. Primary Inductance

To calculate the primary inductance L_{P}, we need to decide the switching frequency range in which we allow the controller to operate. There are two constraints: at low line, maximum power, the switching frequency should be above the audible range (higher than 20 kHz). At high line, 50% nominal power, the switching period should be higher than $7.5 \mu \mathrm{~s}$, to prevent the controller from jumping between valleys (because these discrete jumps between 2 valleys can generate noise in the transformer as well). If we still neglect $\mathrm{T}_{\mathrm{W}}, \mathrm{L}_{\mathrm{P}}$ is then given by:

$$
\mathrm{LP}_{\mathrm{P}} \leq \frac{1}{2 \cdot \mathrm{FSWmin} \cdot \operatorname{POUTmax}\left(\frac{\mathrm{~V}_{\text {INmin }}+\mathrm{N} \cdot\left(\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F})}\right.}{\eta \cdot \mathrm{N} \cdot \mathrm{~V}_{\text {INmin }} \cdot\left(\mathrm{V}_{O U T}+\mathrm{V}_{\mathrm{F})}\right.}\right)^{2}}
$$

If we choose 20 kHz min for 160 W of output power at 110 Vdc , we obtain: $\mathrm{L}_{P} \leq 380 \mu \mathrm{H}$.

To take tolerances into account, we can choose $\mathrm{L}_{\mathrm{P}}=$ $330 \mu \mathrm{H}$, and verify if it satisfies the second condition:

For 80 W output power at $375 \mathrm{Vdc}, \mathrm{T}_{\mathrm{SW}}=9 \mu \mathrm{~s}$, i.e. $\mathrm{F}_{\mathrm{SW}}=112 \mathrm{kHz}$.

4. Clamp

We can calculate the overvoltage due to the leakage inductance: $V_{O V}$ LEAK $=I P \sqrt{\frac{\text { LLEAK }}{\text { CTOT }}}$.

At this time we don't know the value of L $_{\text {LEAK }}$, but we can choose a value of 3% of the primary inductance (i.e. $10 \mu \mathrm{H}$), which would not be too far from the final value. Considering 330 pF on the drain, at 375 V input voltage and 160 W of output power, which gives $\mathrm{I}_{\mathrm{P}}=4.2 \mathrm{~A}$, we obtain: $\mathrm{V}_{\text {OVLEAK }}=730 \mathrm{~V}$.

But we only have 100 V available before reaching the MOSFET breakdown voltage. So we will need to add a clamp to limit the spike at turn-off.

Please refer to application note AN1679 (available at www.onsemi.com) to calculate this clamp. You can also use a SPICE simulator to test the right values for the components.
We chose to use an RCD clamp, using a 1N4937 diode, a $47 \mathrm{k} \Omega$ resistor and a 10 nF capacitor: it is an aggressive design (the maximum drain voltage will be very close to the maximum voltage allowable for the MOSFET), but it gives enough protection without degrading the efficiency too much.

5. Brown-Out Protection

We want the power supply to turn on at 90 Vac, and turn off at 70 Vac .

Start-up level is directly given by the resistor divider connected between high input voltage and BO pin, knowing that the threshold of the internal comparator is 500 mV . 90 Vac means 127 Vdc , so the ratio of the divider must be 254.

Once the controller has started, an internal $10 \mu \mathrm{~A}$ current source is activated and flows out of BO pin, creating hysteresis. 70 Vac means 99 Vdc , so we want a 28 V hysteresis, corresponding to 22% of the start-up level. The corresponding threshold for the comparator is 390 mV , so the $10 \mu \mathrm{~A}$ current must create an offset of 110 mV across the equivalent resistance of the resistor divider.

Those 2 conditions lead to 2 equations:

$$
\frac{\mathrm{R}_{\text {BOhigh }}+\mathrm{R}_{\text {BOlow }}}{\mathrm{R}_{\text {BOlow }}}=254
$$

and

$$
\frac{\mathrm{R}_{\text {BOhigh }} \cdot \mathrm{R}_{\text {BOlow }}}{\mathrm{R}_{\text {BOhigh }}+\mathrm{R}_{\text {BOlow }}} \cdot 10-5=0.11
$$

Solving these equations gives $\mathrm{R}_{\text {BOhigh }}=2.8 \mathrm{M} \Omega$ and $R_{\text {BOlow }}=11 \mathrm{k} \Omega$.

But in reality there will be a non-negligible ripple on the DC input voltage, and the hysteresis should be increased in order to obtain the desired turn-on and turn-off levels.

Final value for $\mathrm{R}_{\text {BOlow }}$ is 15 k ($\mathrm{R}_{\mathrm{BO} 2}$ in schematic), and $3.9 \mathrm{M} \Omega$ for $\mathrm{R}_{\mathrm{BOhigh}}$ (split in $\mathrm{R}_{\mathrm{BO}}=2.7 \mathrm{M} \Omega$ and $\mathrm{R}_{\mathrm{BO} 1}=$ 1.2 $\mathrm{M} \Omega$ to sustain the high voltage).

A capacitor C 7 is added between BO pin and ground to filter any noise, and to ensure a DC voltage. This capacitor value should be small enough, otherwise it may introduce a delay between input voltage collapsing and Power supply turn-off (a 10 nF ceramic capacitor gives good results).

6. Overpower Protection

We have seen that full load maximum peak current at low input voltage is 6.5 A , but only 4.2 A at high input voltage. We need to create an offset on the current sense signal. As 500 mV on CS pin corresponds to $6.67 \mathrm{~A}, 2.3$ A corresponds to a 172 mV offset. At 375 Vdc input voltage, BO voltage is 1.55 mV : as a result a $73.5 \mu \mathrm{~A}$ current flows out of CS pin during ON time. To create the desired 172 mV offset, it is necessary to insert a $2.34 \mathrm{k} \Omega$ resistor R6 in series. We choose a standard $2.2 \mathrm{k} \Omega$ value.

7. Standby

In order to reduce as much as possible the power wasted during standby mode, NCP1337 enters an efficient and quiet soft-skip mode. But because of the high output voltage of 135 V , any leakage current will create a significant output power, preventing the power supply to reach the requirement of less than 1 W standby power. This demonstration board thus includes a simple patented circuit that allows collapsing all unused outputs, while still powering the 5 V standby rail. This circuit is made of a regulated rectifier (around M1) connected between the high voltage output winding and the input of the 5 V linear regulator IC4, and of a switch (Q1) that changes the regulation setpoint. DZ2 is added to prevent voltage drops during transition from normal to standby mode.

If the leakage current on the 135 V output is extremely low, this circuit can be omitted (see appendix schematic A).

8. Controller Supply

NCP1337 includes a DSS able to supply the controller without the help of any auxiliary supply. However this is possible only if the gate current is low, i.e. during standby in our case. So an auxiliary winding is necessary to supply the controller during normal mode, but DSS can be activated in standby, for instance in the case all voltages are decreased by the circuit described above. In order to minimize the power consumption of the DSS, HV pin can be connected to the half-wave rectified input voltage instead of the full-wave rectified bulk voltage.

To further decrease the power consumed by the controller during standby, it may be interesting to prevent the DSS to turn on: this can be achieved by inverting the coupling of the auxiliary winding (see appendix schematic B). By creating the auxiliary supply from a forward winding instead of a flyback winding, it is possible to ensure a sufficient supply voltage even in standby mode with all voltages reduced. V_{CC} voltage must then be clamped to protect the controller
when the input voltage is high: as a result overvoltage protection on V_{CC} pin is lost.

Static Measurements

Brown-Out Protection

- Input voltage turn-ON level: 95 Vac
- Input voltage turn-OFF level: 80 Vac

Efficiency

- At $230 \mathrm{Vac}, 148 \mathrm{~W}$ IN for 135 W OUT $\rightarrow \quad 91 \%$
- At 110 Vac, 154 W IN for 135 W OUT $\rightarrow 87 \%$

Standby Power

- Noise-free
- All outputs are low (135 V output is 12.7 V), except 5 V standby output which is maintained. IOUT consumption is taken on 5 V standby output. Controller is powered thanks to the Dynamic Self-Supply (DSS).

IOUT $V_{\text {IN }}$	0	10	20	30	40
230 Vac	390 mW	600 mW	780 mW	980 mW	1.18 W
110 Vac	230 mW	460 mW	700 mW	860 mW	975 mW

- All outputs are low (135 V output is 12.7 V), except 5 V standby output which is maintained. IOUT consumption is taken on 5 V standby output. Controller is powered thanks to a forward-coupled auxiliary winding.

IOUT $V_{\text {IN }}$	0	10	20	30	40
230 Vac	340 mW	470 mW	580 mW	730 mW	900 mW
110 Vac	140 mW	350 mW	540 mW	700 mW	820 mW

- All outputs are at their nominal values. IOUT consumption is taken on 5 V standby output. Controller is powered thanks to the auxiliary winding.

IOUT $V_{\text {IN }}$	0	10	20	30	40
230 Vac	260 mW	380 mW	620 mW	740 mW	880 mW
110 Vac	180 mW	280 mW	400 mW	540 mW	690 mW

Static Measurements

Soft-Start

At 230 Vac, full load

At 230 Vac, no load

At 110 Vac, no load

At 110 Vac, no load

Valley Switching

At 230 Vac, full load

At 230 Vac, half load
Load Transients

At 230 Vac, 20% to 80% load on 135 V output

At 110 Vac, full load

At 110 Vac, half load

At 110 Vac, 20% to 80% load on 135 V output

Standby

Standby burst at 110 Vac

Standby burst at 230 Vac

Transitions Between Modes

Normal to Standby Transition

Standby to Normal Transition

Bill of Material

IC1	NCP1337	R7	10Meg -4kV
IC2	TL431	R8	330
IC3	SFH615A	R10	150k
IC4	MC78L05	R11	120k
X1	IRFIB6N60A	R12	5.6k
M1	BS108	R13, R16	100k
Q1	BC547	R17	-
T1	TDK SRW42/15EC-X21V017, CLICK BCK4201-304	R18, R31	18k
L1	OREGA 47283900 RM4	R19	1.5k
F1	2A 250V	R33,R34	47k
D1	KBU4K	P1	1k
D5, D10, D14, D16, D141	1N4007	C1, C2	330p-300Vac-X2
D6	1N4937	C3	10p-2kV
D7	1N4148	C4	-
D11, D12, D111	MUR420	C5	220u-450V
D13	MUR460	C7	1u-63V
DZ2	3V9	C8	10n-630V
R1, R35	1k	C9	-
R1, R35 R2	1k $47 \mathrm{k}-2 \mathrm{~W}$	C10	33u-25V
Rbo	2.7Meg	C11, C13, C15, C25, C131	100n
Rbo1	1.2Meg	C12	330p-1.5kV
Rbo2	15k	C14, C16, C141	1000u-35V
Rhyst	-	C17	100u-25V
R3	47	C18	1000u-16V
R4	15	C20	100u-200V
R5, R21	33k	C21	1 n
Rs1, Rs2	0.15	C23	$2.2 n-Y 1$
R6	2.2k	C26	470n

AND8246/D

Board Picture

Appendix Schematic A

Appendix Schematic B

ON Semiconductor and (1iI are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

